HOMEWORK 3 - HINTS/ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 2.4: The precise definition of a limit

2.4.2. $\delta = 0.4$

2.4.4. $\delta = \min\{1, \frac{1}{6}\} = \frac{1}{6}$ (there are many answers to this question, so don't worry if yours is different from mine)

2.4.11. Note: If this problem is too confusing for you, skip it! (it does more harm than good)

- (a) $r = \sqrt{\frac{1000}{\pi}}$ (from now on, let's call this a)
- (b) $|r-a| < \min\left\{\frac{5}{\pi(2a+1)}, 1\right\} = \frac{5}{\pi(2a+1)}$ (for this, first set |r-a| < 1, solve for r to get a 1 < r < a + 1, then |r+a| = r + a < 2a + 1, so $\pi |r-a| |r+a| < \pi |r-a| (2a+1) < 5$, hence $|r-a| < \frac{5}{\pi(2a+1)}$
- (c) $x = r = \text{radius}, a = \sqrt{\frac{1000}{\pi}}, L = 1000, \epsilon = 5, \delta = \min\left\{1, \frac{5}{\pi(2a+1)}\right\}$

2.4.19. See discussion section! This is an example of the 'easy case' with $\delta = \frac{3\epsilon}{4}$

2.4.32. This is an example of the 'complicated case' with $\delta = \min \{1, \frac{\epsilon}{19}\}$.

To get this δ , notice that if |x-2| < 1, then 1 < x < 3, and so $7 < x^2+2x+4 < 19$, so $|x^2+2x+4| < 19$

2.4.37. This is again an example of the 'complicated case' with $\delta = \min\left\{\frac{a}{2}, \epsilon\sqrt{a}\left(1+\frac{1}{\sqrt{2}}\right)\right\}$

To get this δ , notice that if $|x - a| < \frac{a}{2}$, then $\frac{a}{2} < x < \frac{3a}{2}$, and so in particular $\sqrt{x} + \sqrt{a} > \left(1 + \frac{1}{\sqrt{2}}\right)\sqrt{a}$ and then:

$$\frac{|x-a|}{\sqrt{x}+\sqrt{a}} < |x-a| \frac{1}{\left(1+\frac{1}{\sqrt{2}}\right)\sqrt{a}} < \epsilon$$

which gives:

$$|x-a| < \epsilon \sqrt{a} \left(1 + \frac{1}{\sqrt{2}}\right)$$

The next two are optional, but good for practice:

Date: Friday, September 20th, 2013.

2.4.42. $\delta = \sqrt[4]{\frac{1}{M}}$

2.4.43. $\delta = e^M$ (where M is negative)

2.4.44. This is absolutely ridiculous, so feel free to skip it if you want!

(a) Let M > 0. We want to find δ such that if $|x-a| < \delta$, then f(x)+g(x) > M.

However, by replacing M by M + (1 - c) in the definition of the limit of f, there exists δ_1 such that if $|x - a| < \delta_1$, then f(x) > M + (1 - c)

Moreover, by letting $\epsilon = 1$ in the definition of the limit of g, we know that there exits δ_2 such that if $|x - a| < \delta_2$, then |g(x) - c| < 1. In particular, we get g(x) - c > -1, so g(x) > c - 1.

Hence, if you choose $\delta = \min \{\delta_1, \delta_2\}$, then if $|x - a| < \delta$, we have f(x) + g(x) > M + (1 - c) + (c - 1) = M.

(b) Let M > 0. We want to find $\delta > 0$ such that if $|x - a| < \delta$, then f(x)g(x) > M.

By replacing M by $M\left(\frac{2}{c}\right)$ in the definition of the limit of f, we know that there exists δ_1 such that if $|x-a| < \delta_1$, then $f(x) > M\left(\frac{2}{c}\right)$

Moreover, by letting $\epsilon = \frac{c}{2} > 0$ in the definition of the limit of g, we know that there exists δ_2 such that if $|x - a| < \delta_2$, then $|g(x) - c| < \frac{c}{2}$. In particular, $g(x) - c > -\frac{c}{2}$, so $g(x) > c - \frac{c}{2} = \frac{c}{2} > 0$.

Hence, if you choose $\delta = \min\{\delta_1, \delta_2\}$, then if $|x - a| < \delta$, we have $f(x)g(x) > (M_c^2)(\frac{c}{2}) = M$.

(c) Let |M < 0|. We want to find $\delta > 0$ such that if $|x - a| < \delta$, then f(x)g(x) < M.

By replacing M by $M\left(\frac{2}{c}\right)$ in the definition of the limit of f, we know that there exists δ_1 such that if $|x-a| < \delta_1$, then $f(x) > M\left(\frac{2}{c}\right)$

Moreover, by letting $\epsilon = -\frac{c}{2} > 0$ in the definition of the limit of g, we know that there exists δ_2 such that if $|x - a| < \delta_2$, then $|g(x) - c| < -\frac{c}{2}$. In particular, $g(x) - c < -\frac{c}{2}$, so $g(x) < c - \frac{c}{2} = \frac{c}{2} < 0$.

Hence, if you choose $\delta = \min\{\delta_1, \delta_2\}$, then if $|x - a| < \delta$, we have $f(x)g(x) < (M_c^2)(\frac{c}{2}) = M$. (Note that in fact the > in the first part, becomes a < here precisely because g(x) < 0!)

Section 2.5: Continuity

2.5.3. -4 (f not defined at -4; neither), -2 (left-hand-side and right-hand-side limits not equal; continuous from the left), 2 (ditto; continuous from the right), 4 (left-hand-side limit does not exist; continuous from the right)

2.5.11. f(2) = 4 (You get this by solving for f(2) in 3f(2) + f(2)g(2) = 36)

2.5.20. Not continuous because the limit as $x \to 1$ equals $\frac{1}{2}$ (factor out the numerator and denominator), whereas f(1) = 1

2.5.28. Continuous because it's a ratio of two continuous functions (and the numerator/denominator are continuous because of composition of continuous functions), $Dom = \mathbb{R}$

2.5.38. $\tan^{-1}\left(\frac{2}{3}\right)$

2.5.54. Let $f(x) = \sin(x) - x^2 + x$

Then $f(1) = \sin(1) - 1 + 1 = \sin(1) > 0$, whereas $f(2) = \sin(2) - 4 + 2 = \sin(2) - 2 < 0$.

Moreover, f is continuous on [1,2], hence by the Intermediate Value Theorem there exists one c in (1,2) such that f(c) = 0, that is, $\sin(c) = c^2 - c$

2.5.60. Use the fact that $\sin(a+h) = \sin(a)\cos(h) + \sin(h)\cos(a)$

2.5.69. Define f(t) to be the altitude of the monk on the first day, g(t) to be the altitude of the monk on the second day, and let h(t) = f(t) - g(t). Then h(0) > 0, h(12) < 0 (where 0 means 7AM and 12 means 12PM), then by IVT, there is one number c such that h(c) = 0, i.e. f(c) = g(c)

SECTION 2.6: LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES

2.6.4.

- (a) 2
- (b) -1
- (c) $-\infty$
- (d) $-\infty$
- (e) ∞

(f) Horizontal asymptotes: y = -1, y = 2; Vertical asymptotes: x = 0, x = 2

2.6.16. 0 (factor out x^3 from the numerator and the denominator)

2.6.26. -1 (first factor out x^2 from the square root, and use $\sqrt{x^2} = |x| = -x$ because x < 0, then multiply by the conjugate form.

2.6.38. $\tan^{-1}(-\infty) = -\frac{\pi}{2}$ (by continuity of \tan^{-1})

2.6.43. y = 2 (at $\pm \infty$), x = 1, x = -2 (factor out the denominator)

PEYAM RYAN TABRIZIAN

Section 2.7: Derivatives and Rates of Change

2.7.6. y = 9x - 15

2.7.12.

- (a) A runs with constant speed, while B is slow at first and then speeds up
- (b) ≈ 8.5 seconds
- (c) 9 seconds

2.7.17.
$$g'(0) < 0 < g'(4) < g'(2) < g'(-2)$$

2.7.18. y = 4x - 23 (y + 3) = 4(x - 5) is also acceptable)

2.7.19. f(2) = 3, f'(2) = 4