HOMEWORK 3 - HINTS/ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 2.4: The precise definition of a limit
2.4.2. $\delta=0.4$
2.4.4. $\delta=\min \left\{1, \frac{1}{6}\right\}=\frac{1}{6}$ (there are many answers to this question, so don't worry if yours is different from mine)
2.4.11. Note: If this problem is too confusing for you, skip it! (it does more harm than good)
(a) $r=\sqrt{\frac{1000}{\pi}}$ (from now on, let's call this a)
(b) $|r-a|<\min \left\{\frac{5}{\pi(2 a+1)}, 1\right\}=\frac{5}{\pi(2 a+1)}$ (for this, first set $|r-a|<1$, solve for r to get $a-1<r<a+1$, then $|r+a|=r+a<2 a+1$, so $\pi|r-a||r+a|<$ $\pi|r-a|(2 a+1)<5$, hence $|r-a|<\frac{5}{\pi(2 a+1)}$
(c) $x=r=$ radius, $a=\sqrt{\frac{1000}{\pi}}, L=1000, \epsilon=5, \delta=\min \left\{1, \frac{5}{\pi(2 a+1)}\right\}$
2.4.19. See discussion section! This is an example of the 'easy case' with $\delta=\frac{3 \epsilon}{4}$
2.4.32. This is an example of the 'complicated case' with $\delta=\min \left\{1, \frac{\epsilon}{19}\right\}$.

To get this δ, notice that if $|x-2|<1$, then $1<x<3$, and so $7<x^{2}+2 x+4<19$, so $\left|x^{2}+2 x+4\right|<19$
2.4.37. This is again an example of the 'complicated case' with $\delta=\min \left\{\frac{a}{2}, \epsilon \sqrt{a}\left(1+\frac{1}{\sqrt{2}}\right)\right\}$

To get this δ, notice that if $|x-a|<\frac{a}{2}$, then $\frac{a}{2}<x<\frac{3 a}{2}$, and so in particular $\sqrt{x}+\sqrt{a}>\left(1+\frac{1}{\sqrt{2}}\right) \sqrt{a}$ and then:

$$
\frac{|x-a|}{\sqrt{x}+\sqrt{a}}<|x-a| \frac{1}{\left(1+\frac{1}{\sqrt{2}}\right) \sqrt{a}}<\epsilon
$$

which gives:

$$
|x-a|<\epsilon \sqrt{a}\left(1+\frac{1}{\sqrt{2}}\right)
$$

The next two are optional, but good for practice:

[^0]2.4.42. $\delta=\sqrt[4]{\frac{1}{M}}$
2.4.43. $\delta=e^{M}$ (where M is negative)
2.4.44. This is absolutely ridiculous, so feel free to skip it if you want!
(a) Let $M>0$. We want to find δ such that if $|x-a|<\delta$, then $f(x)+g(x)>M$.

However, by replacing M by $M+(1-c)$ in the definition of the limit of f, there exists δ_{1} such that if $|x-a|<\delta_{1}$, then $f(x)>M+(1-c)$

Moreover, by letting $\epsilon=1$ in the definition of the limit of g, we know that there exits δ_{2} such that if $|x-a|<\delta_{2}$, then $|g(x)-c|<1$. In particular, we get $g(x)-c>-1$, so $g(x)>c-1$.

Hence, if you choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then if $|x-a|<\delta$, we have $f(x)+g(x)>M+(1-c)+(c-1)=M$.
(b) Let $M>0$. We want to find $\delta>0$ such that if $|x-a|<\delta$, then $f(x) g(x)>M$.

By replacing M by $M\left(\frac{2}{c}\right)$ in the definition of the limit of f, we know that there exists δ_{1} such that if $|x-a|<\delta_{1}$, then $f(x)>M\left(\frac{2}{c}\right)$

Moreover, by letting $\epsilon=\frac{c}{2}>0$ in the definition of the limit of g, we know that there exists δ_{2} such that if $|x-a|<\delta_{2}$, then $|g(x)-c|<\frac{c}{2}$. In particular, $g(x)-c>-\frac{c}{2}$, so $g(x)>c-\frac{c}{2}=\frac{c}{2}>0$.

Hence, if you choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then if $|x-a|<\delta$, we have $f(x) g(x)>\left(M \frac{2}{c}\right)\left(\frac{c}{2}\right)=M$.
(c) Let $M<0$. We want to find $\delta>0$ such that if $|x-a|<\delta$, then $f(x) g(x)<M$.

By replacing M by $M\left(\frac{2}{c}\right)$ in the definition of the limit of f, we know that there exists δ_{1} such that if $|x-a|<\delta_{1}$, then $f(x)>M\left(\frac{2}{c}\right)$

Moreover, by letting $\epsilon=-\frac{c}{2}>0$ in the definition of the limit of g, we know that there exists δ_{2} such that if $|x-a|<\delta_{2}$, then $|g(x)-c|<-\frac{c}{2}$. In particular, $g(x)-c<-\frac{c}{2}$, so $g(x)<c-\frac{c}{2}=\frac{c}{2}<0$.

Hence, if you choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then if $|x-a|<\delta$, we have $f(x) g(x)<\left(M \frac{2}{c}\right)\left(\frac{c}{2}\right)=M$. (Note that in fact the $>$ in the first part, becomes a $<$ here precisely because $g(x)<0$!)

SECtion 2.5: Continuity

2.5.3. -4 (f not defined at -4 ; neither), -2 (left-hand-side and right-hand-side limits not equal; continuous from the left), 2 (ditto; continuous from the right), 4 (left-hand-side limit does not exist; continuous from the right)
2.5.11. $f(2)=4$ (You get this by solving for $f(2)$ in $3 f(2)+f(2) g(2)=36$)
2.5.20. Not continuous because the limit as $x \rightarrow 1$ equals $\frac{1}{2}$ (factor out the numerator and denominator), whereas $f(1)=1$
2.5.28. Continuous because it's a ratio of two continuous functions (and the numerator/denominator are continuous because of composition of continuous functions), Dom $=\mathbb{R}$
2.5.38. $\tan ^{-1}\left(\frac{2}{3}\right)$
2.5.54. Let $f(x)=\sin (x)-x^{2}+x$

Then $f(1)=\sin (1)-1+1=\sin (1)>0$, whereas $f(2)=\sin (2)-4+2=$ $\sin (2)-2<0$.

Moreover, f is continuous on $[1,2]$, hence by the Intermediate Value Theorem there exists one c in $(1,2)$ such that $f(c)=0$, that is, $\sin (c)=c^{2}-c$
2.5.60. Use the fact that $\sin (a+h)=\sin (a) \cos (h)+\sin (h) \cos (a)$
2.5.69. Define $f(t)$ to be the altitude of the monk on the first day, $g(t)$ to be the altitude of the monk on the second day, and let $h(t)=f(t)-g(t)$. Then $h(0)>0$, $h(12)<0$ (where 0 means $7 A M$ and 12 means $12 P M$), then by IVT, there is one number c such that $h(c)=0$, i.e. $f(c)=g(c)$

Section 2.6: Limits at Infinity; Horizontal Asymptotes

2.6.4.

(a) 2
(b) -1
(c) $-\infty$
(d) $-\infty$
(e) ∞
(f) Horizontal asymptotes: $y=-1, y=2$; Vertical asymptotes: $x=0, x=2$
2.6.16. 0 (factor out x^{3} from the numerator and the denominator)
2.6.26. -1 (first factor out x^{2} from the square root, and use $\sqrt{x^{2}}=|x|=-x$ because $x<0$, then multiply by the conjugate form.
2.6.38. $\tan ^{-1}(-\infty)=-\frac{\pi}{2}\left(\right.$ by continuity of $\left.\tan ^{-1}\right)$
2.6.43. $y=2($ at $\pm \infty), x=1, x=-2$ (factor out the denominator)

Section 2.7: Derivatives and Rates of Change

2.7.6. $y=9 x-15$
2.7.12.
(a) A runs with constant speed, while B is slow at first and then speeds up
(b) ≈ 8.5 seconds
(c) 9 seconds
2.7.17. $g^{\prime}(0)<0<g^{\prime}(4)<g^{\prime}(2)<g^{\prime}(-2)$
2.7.18. $y=4 x-23(y+3=4(x-5)$ is also acceptable $)$
2.7.19. $f(2)=3, f^{\prime}(2)=4$

[^0]: Date: Friday, September 20th, 2013.

